SOME REDOX REACTIONS OF XENON(II) AND CHLORINE SYSTEMS

M. J. Clegg and A. J. Downs

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road Oxford OX1 3QR (U.K.)

Solutions of XeF⁺Sb₂F₁₁⁻ in SbF₅ react at room temperature with Cl₂ or with chloride-containing species such as PCl₅ and SbCl₅ to give deen orange-brown solutions containing the cations Cl₅⁺, known previously as a low-temperature species [1], and the hitherto unreported XeCl⁺, which has a Raman vibrational frequency of 383cm⁻¹, very similar to that of ICl [2]. The Cl₅⁺ ion has also been isolated as its Sb₂F₁₁⁻ salt, a bright orange solid stable at room temperature, synthesised from Cl₂, F₂ and SbF₅. Intense blue-green colours observed in several reactions of these systems appear to be associated with chlorine in an intermediate oxidation state, possibly Cl₅⁺.

R.J.Gillespie and M.J.Morton, <u>Inorg.Chem.</u>, 9, 811 (1970).
W.Holzer, W.F.Murphy and H.J.Bernstein, <u>J.Chem.Phys.</u>, 52, 399 (1970).

13

I3